Deformable, Time-varying Boundary Problems in Electrodynamics
نویسندگان
چکیده
A novel perturbation technique is formulated that enables the efficient calculation of current on surfaces undergoing time-varying mechanical deformations. The technique computes the current on the perturbed surface using as its starting point the solution for a related static case. This is initially derived using a standard analytical or numerical technique. The key advantage of this approach is that only an initial (computationally expensive) electromagnetic characterisation of the static problem is required. The surface current perturbation terms (and hence the radiated fields) are then directly computed from the static problem with a very low computational overhead.
منابع مشابه
Bending, buckling and free vibration responses of hyperbolic shear deformable FGM beams
This study investigated bending, buckling, and free vibration responses of hyperbolic shear deformable functionally graded (FG) higher order beams. The material properties of FG beams are varied through thickness according to power law distribution; here, the FG beam was made of aluminium/alumina, and the hyperbolic shear deformation theory was used to evaluate the effect of shear deformation i...
متن کاملUncertainties in tomographic reconstructions based on deformable models
Deformable geometric models fit very naturally into the context of Bayesian analysis. The prior probability of boundary shapes is taken to proportional to the negative exponential of the deformation energy used to control the boundary. This probabilistic interpretation is demonstrated using a Markov-Chain Monte-Carlo (MCMC) technique, which permits one to generate configurations that populate t...
متن کاملDeflection of a hyperbolic shear deformable microbeam under a concentrated load
Deflection analysis of a simply supported microbeam subjected to a concentrated load at the middle is investigated on the basis of a shear deformable beam theory and non-classical theory. Effects of shear deformation and small size are taken into consideration by hyperbolic shear deformable beam theory and modified strain gradient theory, respectively. The governing differential equations and c...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملCritique for CS448B ARTDEFO: Accurate Real Time Deformable Objects
of Paper The paper presents an algorithm for physically accurate simulation of elastic deformable objects that are also fast enough for real-time animation. The algorithm uses Boundary Element Method (BEM) (vs. Finite Element Method). The algorithm applies to deformable objects that can be simulated by linear elastic models. It achieves interactive speeds by exploiting coherence in typical inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011